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Microwave-assisted synthesis utilizing supported reagents: a
rapid and versatile synthesis of 1,5-diarylpyrazoles
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Abstract—The application of microwave heating to a silica-assisted solution-phase synthesis technique has been utilized to develop a
rapid and efficient two-step protocol for the preparation of pyrazoles from aryl methyl ketone and aryl hydrazine monomers.
� 2006 Elsevier Ltd. All rights reserved.
The utilization of supported reagents for the solution-
phase synthesis of both singletons and libraries has
become an increasingly applied tool for the preparation
of molecules of biological interest.1 One reason for this
escalation emanates from the appreciation that this
technology provides a beneficial method of performing
chemical transformations with minimal workup. More-
over, an ever-expanding collection of commercially
available supported reagents, for both synthesis and
purification,2 renders this technology more accessible.

In a parallel medicinal chemistry (PMC) environment
this technology is appealing since excess amounts of
reagents can be used to drive reactions to completion.
This culminates in the production of libraries of higher
purity, which is advantageous for the development of
rapid SAR in medicinal chemistry programs. This is also
advantageous when subsequent modification or addi-
tional purification is required. In addition, when using
supported reagents reactions can be easily monitored
by conventional methods.

Aryl pyrazoles are ubiquitous substructures within a
diverse array of compounds with important biological
activity and pharmacological properties.3 The synthesis
of this eminent family of compounds has been well
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reviewed.4 The conventional approach for pyrazole
formation is based on the condensation of substituted
hydrazines with 1,3-diketones or their equivalents, such
as b-ketoesters and b-cyanoketones. Limitations to this
approach are associated with scarce availability of
diversely substituted 1,3-diketones. As an alternative,
it became appealing to develop a two-step synthesis of
pyrazoles from aryl methyl ketones and aryl
hydrazines.5

The reaction of 4-methylacetophenone 1 with ethyl tri-
fluoroacetate 2 was carried out under a variety of condi-
tions (Table 1).5–7 The highest yielding non-microwave
conditions (entry 2) took 5 days to reach completion.
Elevated temperatures (entry 3) decreased the reaction
time to 2 h, although the yield was compromised. On
transferring these conditions into the microwave, the
desired enol ketone 3 was afforded in 10 min with an
excellent yield (entry 4).8,9

With an efficient method to prepare enol ketone 3 in
hand, optimization of the next step was undertaken.
Reaction of enol ketone 3 with 4-methylphenylhydr-
azine 4 was carried out under a variety of conditions
(Table 2).5,7 Firstly, the use of para-toluenesulfonic acid
in ethanol was attempted under non-microwave condi-
tions (100 �C), with an excellent yield being obtained
in 7 h (entry 1). When these conditions were attempted
in the microwave (160 �C) a 61% yield of pyrazole 5
was obtained (entry 2). On changing the acid source to
silica-supported toluenesulfonic acid,10 excellent yields
were obtained in both the thermal and microwave cases
(entries 3 and 4).
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Table 2. Effect of microwave heating and silica-supported acid source on the reaction between enol ketone 3 and 4-methylphenylhydrazine 4

Entry Acid Method Temp (�C) Time Yield (%)

1 pTsOH Non-microwave 100 7 h 95
2 pTsOH Microwave 160 5 min 61
3 Si-TsOH Non-microwave 100 6 h 84
4 Si-TsOH Microwave 160 5 min 95

Table 1. Effect of microwave heating on the reaction between 4-methylacetophenone 1 and ethyl trifluoroacetate 2

Entry Base Solvent Method Temp (�C) Time Yield (%)

1 NaOMe MTBE Non-microwave 25 14 h 25
2 NaH DMF Non-microwave 25 5 days 88
3 NaH DME Non-microwave 100 2 h 60
4 NaH DME Microwave 160 10 min 95
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When using the silica-supported reagent no work-up
was performed. The crude reaction mixture was evapo-
rated to dryness, and the resulting free flowing solid
purified directly by flash column chromatography.11

The optimum conditions for this reaction (entry 4)
yielded pyrazole 5 in 95% yield in 5 min.12

With the above results in hand, we then pursued a
variety of targets by performing the microwave-assisted
enolate reaction followed by the microwave-assisted
Scheme 1. Targets accessed by microwave-assisted enolate formation.
hydrazine addition to the resulting intermediates.
Schemes 1 and 2 highlight the efficiency of this approach
toward the synthesis of pyrazole analogues.13

In summary, we have described a rapid, convenient, and
high-yielding two-step protocol for the preparation
of pyrazoles. The procedure utilizes commercially
available reagents and equipment that are suitable for
the preparation of singletons or automated library
production.



Scheme 2. Targets accessed by microwave-assisted pyrazole formation.
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Smith Process Vial (2–5 mL) was charged with a stir
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